Корпускулярно-волновые свойства частиц.

В 20-х годах XX столетия было установлено, что любая частица имеет корпускулярно-волновую природу. Согласно теории Л. де Бройля (1924 г.), каждой частице с импульсом соответствует волновой процесс с длиной волны λ, т.е. λ = h / p. Чем меньше масса частицы, тем больше длина волны. Для элементарных частиц В. Гейзенберг сформулировал принцип неопределенности, согласно которому невозможно одновременно определить положение частицы в пространстве и ее импульс. Следовательно, нельзя рассчитать траекторию движения электрона в поле ядра, можно лишь оценить вероятность его нахождения в атоме с помощью волновой функции ψ, которая заменяет классическое понятие траектории. Волновая функция ψ характеризует амплитуду волны в зависимости от координат электрона, а ее квадрат ψ2 определяет пространственное распределение электрона в атоме. В наиболее простом варианте волновая функция зависит от трех пространственных координат и дает возможность определить вероятность нахождения электрона в атомном пространстве или его орбиталь. Таким образом, атомная орбиталь (АО) – область атомного пространства, в котором вероятность нахождения электрона наибольшая. Волновые функции получаются при решении основополагающего соотношения волновой механики – уравнения Шредингера. (Точное решение получается для атома водорода или водородоподобных ионов, для многоэлектронных систем используются различные приближения). Поверхность, ограничивающая 90–95 % вероятности нахождения электрона или электронной плотности, называют граничной. Атомная орбиталь и плотность электронного облака имеют одинаковую граничную поверхность (форму) и одинаковую пространственную ориентацию. Атомные орбитали электрона, их энергия и направление в пространстве зависят от четырех параметров – квантовых чисел.

Модель 2.1. Принцип неопределенности.

Программа представляет компьютерный эксперимент по прохождению электронного пучка через одну или две щели. Она позволяет познакомиться с проявлением двойственной природы микрообъектов, то есть наличием у них волновых и корпускулярных свойств. Иллюстрируется принцип неопределенности Гейзенберга.

Известно, что свет обладает как волновыми, так и корпускулярными свойствами. Волновые свойства проявляются при распространении света (интерференция, дифракция). Корпускулярные свойства проявляются при взаимодействии света с веществом (фотоэффект, излучение и поглощение света атомами).

Свойства фотона как частицы (энергия E и импульс p) связаны с его волновыми свойствами (частотой ν и длиной волны λ) соотношениями

E = hν; p = hν / c = h / λ,

где h = 6,63·10–34 Дж∙c – постоянная Планка.

Французский физик Луи де Бройль в 1924 г. высказал предположение, что сочетание волновых и корпускулярных свойств присуще не только свету, но и любому материальному телу. Согласно де Бройлю, каждому телу массой m, движущемуся со скоростью v, соответствует волновой процесс с длиной волны

λ = h / p.

Наиболее отчетливо волновые свойства проявляются у элементарных частиц. Это происходит потому, что из-за малой массы частиц длина волны оказывается сравнимой с расстоянием между атомами в кристаллических решетках. В этом случае при взаимодействии пучка частиц с кристаллической решеткой возникает дифракция. Например, электронам с энергией 150 эВ соответствует длина волны λ ≈ 10–10 м. Такого же порядка межатомные расстояния в кристаллах. Поэтому пучок электронов будет рассеиваться на кристалле как волна, т. е. по законам дифракции.

Для иллюстрации волновых свойств частиц часто используют мысленный эксперимент – прохождение пучка электронов (или других частиц) через щель шириной Δx. С точки зрения волновой теории после дифракции на щели пучок будет уширяться с угловой расходимостью θ ≈ λ / Δx. С корпускулярной точки зрения уширение пучка после прохождения щели объясняется появлением у частиц некоторого поперечного импульса. Разброс значений этого поперечного импульса («неопределенность») есть

Δpx ≈ θp ≈ (λ / Δx)ph / Δx

Соотношение

ΔpxΔxh

носит название соотношения неопределенностей. Это соотношение на корпускулярном языке выражает наличие волновых свойств у частиц.

Эксперимент по прохождению пучка электронов через две близко расположенные щели может служить еще более яркой иллюстрацией волновых свойств частиц. Этот эксперимент является аналогом оптического интерференционного опыта Юнга.




Ответить

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Вы можете использовать HTML- теги и атрибуты:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

+ 48 = 51