Арифметический корень натуральной степени

Уравнение имеет два решения: и . Это числа, квадрат которых равен 4.

Рассмотрим уравнение . Нарисуем график функции и увидим, что и у этого уравнения два решения, одно положительное, другое отрицательное.

Но в данном случае решения не являются целыми числами. Более того, они не являются рациональными. Для того чтобы записать эти иррациональные решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень — это неотрицательное число, квадрат которого равен , a ≥ 0. При a < 0 — выражение не определено, т.к. нет такого действительного числа, квадрат которого равен отрицательному числу . Корень из квадрата

Например, . А решения уравнения соответственно и .

Кубический корень из числа — это число, куб которого равен . Кубический корень определен для всех . Его можно извлечь из любого числа: .

Корень -й степени из числа — это число, -я степень которого равна .

Пример:




Ответить

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Вы можете использовать HTML- теги и атрибуты:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

87 − 79 =